
Surface critical behaviour of the smoothly inhomogeneous planar Ising model: the Pfaffian

method

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 3039

(http://iopscience.iop.org/0305-4470/18/15/027)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 09:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 18 (1985) 3039-3061. Printed in Great Britain 

Surface critical behaviour of the smoothly inhomogeneous 
planar Ising model: the Pfaffian method 

H W J Blote and  H J Hilhorst 
Laboratorium voor Technische Natuurkunde, Postbus 5046, 2600 CA Delft, 
The Netherlands 

Received 4 March 1985 

Abstract. A semi-infinite nearest-neighbour square Ising lattice is investigated whose 
couplings J ( I )  at a distance I from the boundary differ from homogeneity by an amount 
J (  I )  - J (w)  - -Al l .  On the basis of the Pfaffian method we obtain the critical behaviour 
at the surface of this system. The exponents ql,, v l ,  p , ,  y I I  and S I ,  all display rich 
non-universal behaviour as a function of the amplitude A. 

For A below a critical value there is a spontaneous surface magnetisation when the 
bulk ( I  = x) is critical and an asymmetry between the exponents on either side of the 
critical point. 

1. Introduction 

Instances of fully understood surface critical behaviour are rare. These acquire a 
particular significance in connection with current research in surface physics, which 
is concerned with such diverse phenomena as wetting, roughening, surface ordering 
and  polymer adsorption. This work deals with a system for which a complete under- 
standing can be gained. 

We consider an  inhomogeneous ferromagnetic Ising system with nearest-neighbour 
interactions on a semi-infinite square lattice. The coupling constants are represented 
in figure 1. There is a coupling J ,  in the vertical direction and  there are couplings 
J z ( l ) ,  depending on the column number 1, in the horizontal direction. Furthermore 
there is a magnetic field h ,  acting only on the surface spins. Thus the system Hamil- 
tonian is 

3 ; s  P 

= - c ( J l U l , k U l , k + l  + 5 2 ( 1 ) U 1 , k U l + l , k ) -  h l  c fl1.k. (1.1) 
I = 1  k = - x  k = - z  

For the homogeneous case, J2( I )  = J2,  a great wealth of exact results has been obtained 
by McCoy and  Wu (1973), who have given a detailed account of their method. 
Quantities of interest are the correlation function g l l ( r )  between two spins a distance r 
apart on the surface (see figure l ) ,  the surface susceptibility x l l  and  the surface 
magnetisation m , ,  as functions of the temperature T and the surface field h,. At the 
bulk critical temperature T,, these quantities exhibit singularities with critical exponents 
which differ, in general, from the corresponding bulk exponents. For example, at 
T =  T, the pair correlation g ( r )  in the bulk decays as l / r "  with 7 =: (Wu et a1 1976), 
whereas the surface pair correlation gl ( r )  decays as l/r''II with 71, = 1 (McCoy and 
Wu 1967). McCoy and Wu (1969) and McCoy (1969) also carried out a thorough 
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3040 H W J Blote and H J Hilhorst 

Figure 1. The semi-infinite square Ising lattice with inhomogeneous couplings described 
by equation (1.1). All vertical nearest-neighbour bonds have strength J,. The horizontal 
nearest-neighbour bonds J z ( l )  are constant in a given column I, but vary smoothly with 
the distance 1 from the border. The variable r indicates the distance between two border 
spins. 

study of the Hamiltonian of equation (1.1) in the case where J z ( l )  is a random variable 
(see also McCoy and Wu 1973). We shall come back to some of their remarkable 
findings for the random case, comparing them to our own results at the end of 5 9. 

In this paper we consider the case in which the nearest-neighbour couplings J z ( l )  
monotonically tend towards a bulk value J2(oo) in such a way that for asymptotically 
large 1 

where the amplitude A.  is a constant and  the ellipsis indicates higher powers of 1/1. 
Hence the presence of the surface affects the couplings deep into the bulk. We shall 
concentrate in particular on temperatures T near the critical point T, of a homogeneous 
bulk, and put 

t = ( T - T,)/ T,. (1.3) 

The quantities t ,  h ,  and A,, are the basic parameters of the model system. 
Recently much attention has been given to systems determined by equation (1.1) 

and by the more general decay proportional to Aol-P (with p > 0). Hilhorst and van 
Leeuwen (1981) showed, for a similar system on a triangular lattice, that for p > 1 the 
usual boundary critical behaviour (i.e. as exhibited by a semi-infinite homogeneous 
system) is not modified, but that for p s 1 a variety of interesting and  unexpected 
modifications occur. They presented exact results for the case A,> 0 (weakening of 
the couplings near the surface) and showed that p = 1 is a very special marginal case 
with continuously varying exponents. The difficult case of A.  < 0 (enhancement of the 
couplings near the surface) was analysed by Burkhardt and Guim (1984). For A,< 0 
surface magnetisation may occur when there is no bulk magnetisation. A coherent 
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presentation for the general amplitude A, and exponent p has been given by Burkhardt 
et a1 (1984). 

The approach of Hilhorst and van Leeuwen, and of Burkhardt and Guim, is based 
on a sequence of exact reformulations of the problem, constructed with the aid of the 
well known star-triangle transformation. In the limit of couplings J2( I )  that vary only 
smoothly with 1 the problem can be cast in the form of two coupled partial differential 
equations. A less rigorous but very illuminating approach has been formulated by 
Burkhardt (1982a, b) and by Cordery (1982), who show that the exact results can be 
understood on the basis of simple renormalisation group and scaling arguments. These 
arguments predict that in general, for a semi-infinite system whose bulk correlation 
length diverges with an exponent v, the surface critical behaviour is modified only if 
the exponent p of the inhomogeneous part of the couplings satisfies p G 1/ v. 

In this paper we describe a different method of solution, which was reported earlier 
(Blote and Hilhorst 1983). We build on the analysis by McCoy and Wu (1973), which 
is characterised by the use of Pfaffians. Our analysis,just like the star-triangle approach, 
becomes exact in the limit of smoothly varying couplings J 2 ( 1 ) .  On the one hand our 
results are more restricted than those of Burkhardt et a1 (1984) in that we consider 
only the case p = 1 as given by equation (1.2); on the other hand we consider deviations 
from bulk criticality ( t  f 0) and are also able to include a surface magnetic field h,. 
Where the two methods overlap, the results agree. 

The paper is set up as follows. In § 2 we first recall the Pfaffian approach to the 
calculation of the boundary behaviour of the two-dimensional Ising model. We then 
derive a differential equation basic to the remainder of our paper and discuss its validity 
for smoothly varying couplings. The general solution of the equation is given in 0 3 
and is related to the zero-field boundary spin-spin correlation function. In 9 4 we 
extract from the general expression the temperature-dependent correlation length. The 
cases t > O  and t < 0 ,  as well as different intervals for the amplitude A,, have to be 
distinguished. For A,  below a critical value A,,, the correlation length exponents vl l  
and vi, (for t > 0 and t < 0 respectively) are unequal. In particular, v ,  turns out to be 
non-universal as it varies linearly with A,. In § 5 we discuss the spontaneous magnetisa- 
tion, which is always present when t < 0 and, for A, < A,,,, also when t = 0. Its exponent, 
denoted P I  or ,L?\’), is again non-universal. The correlation function in the scaling limit 
r + CO, t + 0 is considered in § 6. In § 7 we consider the boundary magnetic susceptibil- 
ity; again, for A,<  Ao,, we find yl, f for its exponents. The behaviour of the 
correlation function at criticality is derived in § 8, and the small-h, behaviour of the 
boundary magnetisation on the critical isotherm in § 9. The exponents vl l  and 6 1 1  are 
also found to vary continuously with the amplitude Ao. In § 10 we make a number of 
concluding remarks. These concern the universality of our results, the validity of the 
usual relations between the exponents, and a very remarkable special case in which 
the presence of the boundary is not ‘noticed’ by the system. 

2. A differential equation based on the Pfaffian solution of the Ising model 

We shall let m,(t, h , )  denote the average magnetisation of a boundary spin at the 
reduced temperature t and for a boundary magnetic field h, .  Furthermore gll(r, t )  will 
be the pair correlation function between two spins on the boundary a distance r apart, 
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in zero field (see figure 1 ) .  For r+oo we have 

Iim gll(r, t )  = m : ( t )  
T'CD 

where 

m,( t )  = lim m,( t, h, )  (2.2) 
h i l o  

is the spontaneous boundary magnetisation. Another quantity of interest will be the 
zero-field boundary susceptibility x, ,( t ) ,  defined as 

X l l ( t )  = (ml(t, h l )  - m , ( t ) ) / h , .  (2.3) 

It may also be obtained as a sum over the pair correlation: 

Formal expressions for the quantities m , ( t ,  h , )  and gll(r, t ) ,  for arbitrary couplings 
J2( I ) ,  can be found in McCoy and Wu (1973). These authors employed the Pfaffian 
method developed by Kasteleyn (1961, 1963), and some of their results will serve as 
a starting point for this work. The Pfaffian method reduces calculations in the two- 
dimensional Ising model to the problem of finding the determinant of a matrix, the 
rows and columns of which each correspond to a definite lattice site. In the case such 
as that shown in figure 1 ,  one can Fourier transform in the translationally invariant 
vertical direction, thereby introducing a wavenumber 8. The original determinant then 
reduces to the product of smaller, &dependent determinants. The calculation of each 
of these can be done recursively in the column variable 1, and involves a quantity xI( e).  
The expression for gll( r, t )  thus obtained by McCoy and Wu reads, in a boundary field 
h ,  = 0, 

where x l (  e)  is the solution of the recursion relation 

in which 

a(  e) = -22, sin el1 + z,  exp(ie)l-2, b( e)  = ( 1  - z:)ll+ z1 exp(iO)l-2 (2.7) 

z, = tanh( J,/ k B T )  (2.8) 

The recursion relation should be solved with the boundary condition that lim1+= xl( 0 )  = 
x,(O) be the stable stationary solution when (2.6) is iterated in the direction of 
decreasing 1. This fully defines how to calculate gll(r, t ) .  

Again using the Pfaffian methcd McCoy and Wu find for the boundary magnetisa- 
tion m,( t, h , )  in arbitrary boundary field h ,  the expression 

z2( I )  = tanh(J,( l ) /  kBT)  ( 1  = 1,2,  . . . , CO). 

1 
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where 

z = tanh( h , / k B T )  (2.10) 

and  

d( 0 )  = -2 sin 011 +exp(i0)l-2. (2.1 1) 

The recursion relation (2.6), while trivial for a homogeneous lattice, cannot be solved 
exactly in the general case. However, if the couplings J2(  I )  vary sufficiently smoothly, 
then I may be regarded as a continuous variable, and, in an appropriately taken limit, 
(2.6) reduces to a differential equation. There are two ways at least to derive this 
equation. One of them, to be presented here, is based on considering the temperature 
region near bulk criticality, i.e. 

ltl<< 1. (2.12) 

The other one is based on taking the anisotropic limit and is given in the appendix. 
The bulk critical temperature T, is the value of T for which the criticality relation 

(Onsager 1944) is satisfied, where we have set z2 z2(co).  A pair satisfying relation 
(2.13) will be denoted (zlc,  zzc). We may now indicate three small parameters in our 
problem. Firstly, if (2.12) holds then z1 and z2 will, in general, deviate from zlc and 
z2c by amounts of the order of t. Secondly, we shall be interested only in the large-r 
behaviour of the correlation function g l l ( r ,  t ) ,  which is determined by the small-6 
behaviour of X I ( @ ) .  Thus we assume 

0<< 1. (2.14) 

Thirdly, we impose that the couplings J z ( l )  differ only little from their bulk value 
J2(m). This condition is realised if J 2 ( I )  is of the form 

J2( I )  = Jz(m) - E A ~ A (  c l )  (2.15) 

where E is a small constant and A ( x )  an  arbitrary function which remains finite for 
x + O  and has the large-x expansion 

A ( x )  = x- '  + a2x-' + a3x-3 + . . . ( X  + E) (2.16) 

so that (1.2) is ensured. In what follows we shall employ the special choice 

A ( x ) =  l / ( l + x ) .  (2.17) 

We emphasise that the amplitude A .  in (2.15) is not required to be small. 
It is now natural to assume that t and 0 are also of the order of E .  With the aid 

of (2.12), (2.14) and (2.15) we can then expand the coefficients in the recursion relation 
(2.6) and obtain to first order in t and 0 

z,(l) 2 ~ 2 ~ -  (1 - z:,)(J2(m)? + E A , A ( E I ) ) / ~ , T , .  

Substitution into (2.6) yields the equation 

(2.18) 

(2.19) 
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where we have defined 

Y ,  = x,/z2c 

c = 2z,,/( 1 - z?,) 

c2 = 2(1- Z:c)J2(@3)/ZZckBTc. 

A = 4Ao/ kBTc s i n h ( 2 J 2 ( ~ ) /  kBTc) 

c1 = 4JI/  kBTc 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

From (2.20) we see that yl-l - yl is of the order of E.  We can formally derive a differential 
equation by introducing 

s = E I + 1  (2.25) 

Y ( S )  = Yl (2.26) 

putting t = E <  6 = E &  and taking the limit E + 0 in (2.20). In the discussion in § 10 we 
further comment on this limit. The result is 

(2.27) 

where we have again written t for I and 0 for e, and used the explicit form (2.17) for 
A(x), and where 

y = C I  + ~2 = 2[2z,,JI + (1 - Z : , ) J ~ ] / Z ~ , ~ ~ T , .  (2.28) 

One easily finds that the proper boundary condition for equation (2.27) is 

YW = - ( Y ~ + P ) / ~ C O  (2.29) 

where 

= ( y 2 t 2 + 4 ~ 2 e 2 ) 1 / 2 .  (2.30) 

One can convert the nonlinear first-order equation (2.27) into a linear second-order 
differential equation by introducing 

(2.31) 

Inversely we have 

From (2.27) and (2.31) one obtains 

where 

K = - fAyt/p = - fA sgn t / ( l  +4c202/ y 2 t 2 ) 1 ’ 2  

p = $ ( l - A ) .  

(2.33) 

(2.34) 

(2.35) 
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The boundary condition (2.29) becomes 

u(o0) = 0. (2.36) 

Equation (2.33), which is Whittaker’s differential equation, constitutes together with 
(2.36) our reformulation of the problem. We shall see in the following sections that 
its solutions imply a richness of new phenomena. After giving the general solution of 
(2.33) in § 3, we shall discuss the case of arbitrary t # 0 in § §  4-7, and the special case 
t = O i n § § 8 a n d 9 .  

3. Solution of the differential equation. The resulting integral for the correlation 
function 

The solution to the differential equation (2.33) with boundary condition (2.36) is the 
Whittaker function 

u ( z )  = W,,,(Z) (3.1) 

(Abramowitz and Stegun (AS) 1965, ch 13). It is usually written as 

w,,,(z) = exp(-+z)z”*+, U ( i + p - K ,  1+2p ,Z)  (3.2) 

with 
Zl-b 

‘(’I M (  1 + a - 6,2 - 6, z )  r ( i  - 6)  
U ( a ,  6, z )  = M (  U, 6, Z )  --- 

ryi + a - 6 )  I - 6  ‘ ( a )  

(see AS, equation (13.1.3)). Here M ( a ,  6, z) is the Kummer function 

(3.3) 

with the usual notation 

( a ) ,  = a(  a + I ) (  a + 2) . . . ( a  + n - 1) ( n  = 1,2,  . . . ). (3 .5)  

Derivatives U’( a, 6, z )  can be expressed in the U (  a, 6, z )  themselves with the aid of 
the property 

(3.6) 
From (2.5), (2.21), (2.32) with s = 1, and using (3.6) as well as several other 

relationships between the functions U (see AS, ch 13.4), we obtain for gll(r, t )  the 
expression 

zU’(U,  6, Z )  = ( U  - 6 +  Z )  U ( U ,  6, Z )  - U ( U  - 1, 6, z ) .  

1 - 2 p  U ( + + p  - K, 2 p  + 1, p )  d 8  8 exp(-ire) 
1 - 2 p  -2K U ( - + + p  - K ,  2 p  - 1, p )  (3.7) 

with 

go = 2c /z2c  = 4z,,/(1 - Z J 2 .  (3.8) 
With the aid of (3.3) the functions U in (3.7) can be expressed in terms of Kummer 
functions. Upon rewriting the resulting expression and using (2.34) and (2.35) we find 

(3.9) 
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with the numerator N (  0)  and denominator D( e )  given by 

and 

(3.11) 

The integrand in (3.9) depends on 6 and on t both explicitly and via p and K.  It 
depends on the amplitude A explicitly and via p and K .  In the next sections the 
equations (3.9)-(3.11) will be the starting point for the asymptotic evaluation of gll(r, t )  
when t is small. 

4. The analytic structure of the integrand of (3.9). Correlation lengths 

4.1. General considerations 

The boundary correlation length 511(t) is defined by 

gll(r, t)-exP(-r/511(t)) ( r j m ) .  (4.1) 

T l , ( t )  = til( t )  = s^-( - t )  (4.2) 

For t + 0 one expects the correlation length to diverge and therefore we write 

for t > 0 and t < 0 respectively. In homogeneous semi-infinite Ising systems one usually 
finds that is equal to the bulk correlation length 6. For a square lattice this means 
(Wu et a1 1976) 

5ll(t) = 5 ( t )  = l o I t l - Y  ( t - + O )  (4.3) 

i o =  Z,ckRTc/[(l - z : , ) J I + 2 ~ , , J * l .  (4.4) 

with v = 1 and, for the direction parallel to the J l  bond (i.e. parallel to the boundary) 

We shall see below that for inhomogeneous ( A Z O )  semi-infinite lattices both the 
amplitude and the exponent of may be altered. 

From (3.9) one can see that 511(t) is determined by the non-analyticity of N (  0 ) / D (  e )  
in the complex 0 plane with the smallest imaginary part. Since both N (  e )  and D( 0 )  
depend on 0 only via the root 

R ( e / t )  = ( i + 4 ~ ~ e ~ / y ~ t ~ ) ~ / ~  (4.5) 
the ratio N ( B ) / D ( B )  has the same singularities as this root, namely branch points at 

(4.6) 
We shall cut the complex 8 plane along the imaginary axis from *iiyltl/c to * i a .  
From (3.9) and (4.6) we then see that $there are no other singularities, we have 

(4.7) 

= +i’ 2 l Y t l C .  

511 ( t )  = 2 c /  Y I t I. 
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With the aid of (2.13), (2.23), (2.28), and (4.4) one can show that (4.7) is identical to 
(4.3). Therefore equation (4.7), to the extent that it will remain unmodified by the 
considerations below, represents the well known correlation length divergence prevail- 
ing both in the bulk and on the boundary of homogeneous semi-infinite systems. 

We should now consider the possibility of additional poles in N ( 0 )  or zeros in 
D ( 0 ) .  Since l /T(z)  is analytic for all z and M is a power series, we do not expect 
poles in N ( 0 ) .  The remainder of this section will be devoted, therefore, to the study 
of the zeros of D ( 0 ) .  A useful observation is that with the definition 

S =  e / t  (4.8) 

we can expand the function D ( 0 )  in the form 

+ r(2pL) t2P( CO( 8) 4- tC,( e) + t2C2( e) + . . .) r(;+/.L - K ( S ) )  (4.9) 

where we have indicated explicitly the dependence of K on 8, and where the expansion 
coefficients &.(e) and ck( S) are functions of S only. They are well behaved for e+ 0. 
In particular we have 

Bo(S)=2(1-A) (4.10) 

C0(8)=2cZ/(1+A) .  (4.1 1) 

We wish to solve the equation D( 6) = 0 for small t. The strategy will be to find 
the values of 0 for which the dominant term in (4.9) vanishes. If necessary, corrections 
to these leading-order values may then be found perturbatively as a series in the 
appropriate powers of t. The powers occurring in (4.9) are t k  and It12’’-2+k , k = 2 ,  3 ,  
4 , .  . . . The dominant term is the one with lt12” if p < 1 (hence A > -l) ,  and the one 
with t 2  if p > 1 (hence A <  - 1 ) .  We therefore distinguish these two cases in § §  4.2 
and 4.3 respectively. 

4.2. The correlation length for A >  -1 

For A >  -1  we have p < 1 and the leading term in the function D ( 0 )  given by (4.9) 
is the one proportional to Bo(@. In this term Bo(@ is a constant and R ( S )  has no 
zeros other than at the branch point discussed above. Therefore any additional zeros 
of D ( 0 )  must be the solutions of 

l / r ( + - p  - K ( 6 ) )  =o.  (4.12) 

Using the expressions (2.34) and (2.35) for K and p, and using (4.8), we find from (4.12) 

l+(sgn  t ) / ( l + 4 ~ * 0 ~ / y ~ t ~ ) ” ~ =  -2n/A ( n  = 0 , 1 , 2 , .  . .). (4.13) 

Four cases have to be distinguished. 
(1) t > 0 ,  A>O. There are no solutions to (4.13). 
(2) t < 0, A > 0. For n = 0, 1, 2, . . . there are pairs of imaginary solutions given by 

yt [2n(2n +2A)]”’ 
2c 2 n + A  

0,=*i- ( n = 0 , 1 , 2  , . . .  ). (4.14) 
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(3) t > 0, -1 < A  < 0. There is the same set of poles (4.14), except that the pole at 
8 = 0 is absent: n = 1,2,3, .  . . . 

(4) t <0, -1 < A  <O. The only solution is the second-order pole at Bo= 0. The 
location of the pole and the branch cuts have been indicated in figure 2 for these four 

" 
4 R e  8 

t 
A . 0 ,  f c O  A > O ,  f z O  

i: c 
- 1 < A < O ,  f < O  - 1 < A c O ,  f > O  

11 
A < - l ,  f < O  A < - l ,  , + D O  

Figure 2. Analytic structure of the integrand of (3.19) in the complex 0 plane. The six 
figures correspond to the cases (1) to (6) distinguished in the text. They are symmetric 
with respect to both axes. In three cases there is an infinite sequence of poles (equation 
(4.14) and (4.19)) accumulating towards the branch point. All distances are proportional 
to 1, except that for A < -1, t > 0, one pole is at a distance of order t"-A)'2 from the origin 
(equation (4.21)). 

cases. From equation (4.14) it may be seen that the poles On, n = 1, 2 , .  . . are all of 
order t and that for n + CO they have accumulation points that coincide with the branch 
points. We shall not need higher-order corrections for these poles. Some caution is 
required for the double pole at O o = O ,  however, which in principle could move away 
from the origin in a higher-order calculation. However, for 0 = 0  and t < O  the 
expression (4.12), which multiplies the first part of D( e), vanishes, and the remaining 
part of D( e) is proportional to Oz. Hence for t < 0 the value Oo = 0 is an exact double 
zero of the denominator. We shall see later that this zero is responsible for the 
spontaneous boundary magnetisation. We can now conclude that in cases (2) and (3) 
( t  > 0, -1 < A < 0 or t < 0, A > 0) the correlation length ill( t )  is determined by the root 
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according to 

c 2 + A  1 
.$1dt)= 1/le1l=y ( 1 + A ) 1 / 2 j j  ( t > O , - l < A < O )  or ( t < O ,  A>O). (4.15) 

In cases (1) ( t  > 0, A > 0) and (4) ( t < 0, -1  < A < 0) the correlation length is determined 
by the branch cut and given by (4.7). At A = 0 the two expressions (4.14) and (4.15) 
join continuously. It is clear that in all these cases the correlation length exponent, 
defined by (4.2), is given by vll = 1 .  However, in the regions (2) and (3 )  the correlation 
length amplitudes .$* differ from their bulk value io given by (4.3) and (4.7). In table 
1 we list the ratios .$*= .$J.$o= (? /2c) ; . ,  for the different cases. 

* A  

Table 1. Survey of the critical boundary behaviour of the semi-infinite inhomogeneous 
two-dimensional Ising model described in this work. These results apply in the limits t + 0, 
h ,  + 0 and r 3 X. All quantities are defined in the text. 

t < O  t = O  t > O  

= - A  
VIl  = 1 
5- = f ( 2 + A ) / ( 1  + A  
P I  = i ( l  + A )  

ml (0 ,0 ) - ( -A- l )"2  as At-1  
, y l I (O ,  O)-(-A-2)- '  as A t - 2  
xlI(O, 0) - A - '  as AJO. 

4.3. The correlation length for A < - 1 

4.3.1. First-order calculation. For A< -1  we have p > 1 and the leading term in the 
expression (4.9) for D( e )  is the one proportional to CO( s). Since CO( 8) is a constant, 
the zeros of D ( 0 )  are, to leading order, the solutions of 

(4.16) P/r(;+ CL - K (  e)) = 0. 

There is obviously the double zero 

eo = o ( t  arbitrary, A < - 1 )  (4.17) 

and in addition there are the solutions of 

1 -(sgn t ) / ( 1 + 4 ~ ~ ~ ~ / y ~ t ~ ) ~ ' ~ = 2 ( n + l ) / A  ( n = 0 , 1 , 2  , . . .  ). (4.18) 
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This leads us to distinguish two more cases. 
(5) t > 0 ,  A < - 1 .  We find the solutions 

yt [2n(2n -2A)]'l2 
2c 2 n - A  

8 , = i i -  ( n  = 1 , 2 , .  . . ). (4.19) 

(6) t <O,  A < - 1 .  There are no solutions to (4.16) other than (4.17). The poles 
and branch points for these cases are shown in figure 2. As before, the values 8, given 
by (4.19) are of the order of t and accumulate at the branch points. At A = - 1 ,  the 
expression (4.19) joins continuously with (4.14) (see case ( 3 ) ) ;  when A passes from 
above through A = -1, then 8,  of (4.19) merges with the origin, sticks to it, and becomes 
the solution eo of (4.14). Similarly, the solution 0, of (4.19) becomes the solution O n - l  
of (4.14). 

4.3.2. Second-order correction to the root Bo. For t > 0 we have from (2.30) and (2.31) 
that f - p - ~ ( 0 )  = A, so that (except when A is a non-positive integer) the first series 
of terms in (4.9) does not vanish. Hence the root Bo = 0 found in (4.17) is not an exact 
zero of D(8) .  We consider now the equation obtained by also keeping the next-to- 
leading term, i.e. the one with Bo(8) .  Using (4.10), (4.11), and the fact that for t > O  
we have f+ p - ~ ( 0 )  = 1 we obtain 

whence 

8 , = i i  ( t >  0, A < - 1 ) .  
C 

(4.20) 

(4.21) 

Hence in this case the root B O = O  of (4.17) has a next-order correction and becomes 
the expression (4.21). The correlation length is given by 

(4.22) 

Thus we witness the appearance of a correlation length exponent vll which varies 
continuously with the amplitude A of the applied perturbation, 

vlI = f - 'A 2 (A < - 1 ) .  (4.23) 

For t < 0 we have that f - p - ~ ( 0 )  = 0. Hence Bo = 0 is an exact double zero of 
D( 8 ) .  One can divide this zero out and investigate the remaining expression for further 
zeros. Upon considering again the leading term it appears that the next singularity is 
the branch point. Hence for r < O  and A <  - 1  we again obtain the expression (4.7). 
Therefore 

vi1 = 1 (A < - 1 )  (4.24) 

and we see that we have a case of exponent asymmetry: vi # v l .  The results for the 
exponents are also shown in table 1 and figure 3. 

4.3.3. Second-order correction to the roots On, n = I ,  2, . . . . For A < - 1 the leading-order 
expression (4.19) for the zeros 8, ofthe denominator D coincides with the leading-order 
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Figure 3. The critical exponents as a function of the amplitude A of the inhomogeneous 
perturbation. 

zeros of the numerator N. I t  is easy, however, to calculate higher-order corrections. 
These show that the poles and zeros of N / D  get separated and allow one to find the 
residues. We shall not pursue these corrections here. 

4.4. Special case: A equal to an integer m 

4.4.1. A = m # 0, 1. When the amplitude A is equal to an integer m, we have 2 p  = 1 - m 
and some of the r and M functions involved in the definition (3.2) develop singularities. 
Nevertheless the limit A +  m of the right-hand side of (3.3) exists. The resulting 
function U ( a ,  b, z)  (with b = 1 + 2 p  = 2 -  m )  is a series with terms proportional to 

In z, for k = 0 ,  1, 2 , .  . . . (see AS, equations 
(13.1.6) and (13.1.7)). When A is an integer, equations (3.9) and (3.10) cannot be 
used and one has to repeat the calculation starting from (3.7) and using the explicit 
expression for U ( a ,  b, z ) .  For A # 0, 1 one finds that the leading-order analysis of 
the preceding subsections is not affected, and that the results for the correlation length 
and critical exponents simply carry over to integer A. 

z - / l  -ml /2- (  1 - m  ) / 2 + k  and Z t l l - m l / 2 - ( l - m ) / 2 + k  

4.4.2. A =  -1. For A =  -1 we have from (2.34) and (2.35) that p = 1 and K =fy t /p .  
We try to find the location of poles of the integrand of (3.7) assuming that l O / t l < <  1, 
which means 

p =  y I t l ( i + 2 ~ 2 e 2 / y 2 t 2 + .  . .) 
K = 4 (sgn t ) (  1 - 2c2e2/ y2t2 + . . .). 

(4.25) 

(4.26) 
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For I ti<< 1 the functions U in (3.7) have the small-p expansions 

ryt- K )  
U ( +  - K ,  1, p )  = In p +? - 2r ' (  1) + o ( p  In p )  

r(5-K) 

(4.27) 

(4.28) 

Using (4.25)-(4.28) and taking into account the factor O / ( ~ K  + 1) in (3.7) we find after 
a straightforward calculation that the integrand of (3.7) has a pole at 8 = 0  for t < O  
and poles at t9 = iiytc-'[ln( 1/ yr)]-'12 for t > 0. Hence we have 

(4.29) 

as shown in table 1 

4.4.3. A = 0. For A = 0 we have from (2.34) and (2.35) that p =; and K = 0. In this 
case the differential equation (2.33) has the trivial solution u ( p )  = exp( - $ p )  which via 
(2.32) leads to 

A I ) =  - ( Y t + m c e  (4.30) 

in agreement with (2.29). The only singularities of l / y ( l )  are the branch cuts starting 
at *$yt/c and a pole at 8 = 0 for r<0 .  Hence & , , ( r )  is given by (4.7) for all t<< 1, in 
agreement with Wu er a1 (1976). 

5. The spontaneous magnetisation 

For a homogeneous semi-infinite lattice the spontaneous boundary magnetisation m,( t ) ,  
defined by (2.1), is known to vanish above bulk criticality ( t  > 0) and to be non-zero 
below it ( t  < 0) (McCoy and Wu 1973). It will turn out that in the inhomogeneous 
case, A f 0, the same is true. Anticipating what follows we associate critical exponents 
P I  and Pi" with the leading and the next-to-leading (non-integer) singular powers 
respectively in the series for ml(r)  as t t 0 ,  and we write 

m,( t )  = b , ( - r )PI+ .  . . + b l ( - t ) P ' "  (tT0). (5.1) 

Here the ellipsis represents terms with integer powers between PI and p \ ' ) ,  

(3.9). Since N ( B ) / D ( B )  is odd in 0, we have to evaluate 
For the calculation of the spontaneous magnetisation m l ( t )  we employ (2.1) and 

(5.2) 

The result depends on the 8 + 0  behaviour of the integrand. With the aid of the 
properties of the M and r functions one easily finds from (3.10) and (3.11) the small-8 
expansions 

N (  e) = 1 + o( e 2 )  ( t < 0 )  (5.3) 

(5.4) 
o ( e )  = 2c2e2(-( y j t j ) 2 w - 2 r ( ~ +  I)[ 1 +. . .I + ( A +  I)- '[ I +. . .I} +o(e4) ( t < O ) .  
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Here the ellipsis indicates a power series in t.  For t >  0 both N ( 0 )  and D ( 0 )  remain 
finite in the small-0 limit. For t < 0 the double zero of D( 0 )  at 0 = 0 leads to a simple 
pole in the integrand of (5.2). Using (5.3) and (5.4) as well as the fact that 

we find 
(= 0 

(5.5) 

- ( A +  l)(2cz2J’ 
mi( f ) j_ [ l  + . . . I -  r ( A + 2 ) ( y , t l ) - A - ’ ~ l + . .  .] ( t < O ) .  (5.7) 

Two cases have to be distinguished. For A > - 1 we have to leading order in t 

m,( t )  = [2cz2J( 1 +A)]-”*(  - y t ) ( ’ + A ) / 2  (A>-1 ,  t < 0 )  (5.8) 

i.e. the spontaneous magnetisation decays to zero with a non-universal exponent P I  
which depends on the strength A of the inhomogeneity, 

P I  = ; + + A  ( A >  -1). (5.9) 

In the special case A = 0 this agrees with the result P I  = f obtained by McCoy and Wu 
for a homogeneous system. For A < -1 we have from (5.7) 

m,( t )  = ( ~ C Z ~ ~ ) - ’ / ~ ( I A (  - 1)1’2+ [ 1 +. . . +$ (A+  2)( -yt)-A-’] (A<-1 ,  t < 0 ) .  
(5.10) 

Hence 

PI = o  P\” = - A -  1 ( A <  -1). (5.11) 

From (5.6) and (5.7) it is evident that m l ( t )  is discontinuous at t = O  when A <  -1. In 
§ 8 we show that the value m,(O) is given by the limit tT0. From (5.10) we then see 
that m,(O) vanishes with a square-root singularity as AT-1. 

The results of § 4.4.2, finally, imply that when A = - 1  and t < 0 we have 
N (  e ) / D (  e) = [2c2e2 In( t1)]-’ for 0 + 0. It follows that 

m , ( t )  = [cqC ~ n ( ~ / y I t l ) ] - ” *  (A=-1 ,  t < O ) .  (5.12) 

For A = -2, -3, . . . the non-analytic term in brackets in (5.10) develops a logarithmic 
correction factor, as signalled by the divergence of its coefficient. 

6. The correlation function gll(r) in the scaling limit 

Once the non-analyticities of the integrand of (3.9) in the complex 0 plane have been 
determined, the integration path can be shifted to the lower half-plane and we obtain 
gIl(r, t )  as 

Here g n ( r ,  t )  is the contribution of the pole at --ilOfl1 and gbc(r, t )  is the contribution 
from the integration along the lower branch cut. From (3.9) we have explicitly 
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and, upon putting 8 = -i7, 

) (6.3) 
N( -i.r - E )  N( -i7 + E )  

D(-iT- E )  D(-iT+ E )  
- 

cc 

gbc( r, t )  = e I, dT 7 exp( - rr) 

where 

70 = YI t1/2c (6.4) 

corresponds to the location of the branch point. The term in large round brackets in 
(6.3) is the discontinuity of the function N( e ) / D (  e )  across the branch cut. We now 
use again the expahsion of this function in powers of t at fixed e’/ t 2  = -( y2/4c2)( T ~ / T ~ ) .  

It is useful to introduce the variable 

The leading behaviour of (6.3) comes from the dominant non-analytic term in the 
expansion of N( O)/D(  e).  It will be convenient to denote the order of this term by 
p - 2, so that we can write, at fixed 0 and to leading order as t + 0, 

Explicit expressions for I:(  U )  can easily be obtained. We have p = 1 + A  for -1 < A < 1 
and p = - 1 - A for -2 < A < -1. From (6.3) and (6.6) we obtain 

0 

Y2 g d r ,  t ) = - l t l P  d u u  e x p [ - r ~ ~ ( l + u ~ ) ’ ~ ~ ] Z ~ ( u )  
47TCZ2, 0 

= I tlPF:( r t )  ( t S 0 )  (6.7) 

which defines the scaling function F : ( x ) .  
When At>O, there are no poles and equation (6.7) completes the derivation of 

the scaling form of the correlation function gll(r, t ) .  In the remaining cases, the 
evaluation of the contributions g,,(r,  t )  given by (6.2) is straightforward. We only give 
the results. For A > - 1  and At<O we have for n = l , 2 ,  . . .  

with 8, given by (4.14) and (A),, by (3.5). The expression (6.8) is always positive. It 
has the same scaling form, with the same exponent p = 1 + A  (at least for -1 < A < 1) 
as the branch cut contribution (6.7). By using (6.8) and (6.7) in (6.1) we obtain the 
scaling form of gll(r, t ) .  The sum over n is easily shown to be convergent. 

For A < -1 and t < 0 there is only the branch cut term (6.7). 
For A < - 1  and t > O  the pole at Bo leads to the purely exponentially decaying 

expression 

which in view of (4.21) depends only on the scaling variable r t ( ’ - A ) / 2 .  The contributions 
from the remaining poles (cf P4.3.3) and from the branch cut merely constitute 
corrections to this result, which vanish in the scaling limit t + 0, r + CO at r t ( ’ - A ) / 2  fixed. 
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7. Boundary susceptibility 

The boundary susceptibility xI1(  t )  defined by (2.3) can be calculated in several different 
ways. At this point the easiest way is to substitute in expression (2.4) the results 
obtained in the two preceding sections. Alternatively one may define 

(which subtracts the most singular part responsible for the spontaneous magnetisation). 
Substituting this, via (2.9), in either (2.3) or (2.4) one obtains 

In either way one easily finds that for 1 ti + 0 the susceptibility behaves as 

for t > 0 and t < 0 respectively, with 

Y11= A I =  -A ( - l < A < O )  and (A>O)  

Y11=t(l-A) y i 1 = 2 + A  ( A 6  -1). 

These results are also shown in table 1 and figure 3. It is remarkable that for A < -1 
the exponents y , ,  and y ; ,  are different. 

8. The special case T = T,. The correlation function exponent qll 

Several of the results obtained in the previous sections for T # T, (i.e. t # 0) cannot 
be generalised to the case T =  T, by just taking the limit t+0.  In this section we 
therefore analyse separately the case where the bulk temperature is equal to T,. For 
t = 0 we have from (2.30) and (2.34) that p = 2cI@( and K = 0. The parameter p, directly 
equivalent to the amplitude A of the perturbation, is still arbitrary. By employing 
several relations between special functions one can show that the general solution 
u ( z )  = WK,, (z )  to (2.33) and (2.36) reduces, for K =0,  to 

u(z) = ( z / ~ r ) l ’ ~ K , ( + z )  (8.1) 

where K ,  is the modified Bessel function. This result is obtained in an alternative 
way if by substituting u ( z )  = z l ” u ( z )  one reduces (2.33) to Bessel’s differential equation 
for u ( z ) .  From (8.1), (2.5), (2.21) and (2.32) with s =  1 we find for g l l ( r ,  t =0)  the 
expression 

with 
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When p is not an integer (that is, A not an odd integer), the integrand in (8.2) can 
be analysed with the aid of the small-z expansion 

where 

a k ( p )  = 1 /2k (5k ) ! r (p  +ik+ 1 )  ( k = 0 , 2 , 4 , .  . . ) .  (8.5) 

For integer p the expression (8.4) is replaced by its limiting value, in which also 
logarithms of z appear. The dominant small-6 behaviour of (8.4) depends on the value 
of A. Distinguishing the different cases we find 

( A <  - 1 ,  A #  -3, - 5 , .  . .) T($++A) 
1 +. . . - lfcel - A - 1  

r ( $ - i A )  

y ( i ) = - c 6  In 11/61 ( A =  -1) 

( - 1  < A <  1) 

For A <  -1  and A >  1 ,  the ellipsis indicates the integer powers of e2 which dominate 
the leading non-analytic behaviour. The latter is of relative order 16/’A1-1. For A = *3, 
* 5 ,  . . . it is replaced by terms proportional to 161’A’-’ In 161. The equations (8.6) show 
furthermore that as A + 1 (A  + - 1 )  from either side, the amplitude of the leading term 
vanishes (blows up), and that at the points A = *1 logarithmic corrections appear. 
With the aid of (8.2) and the expressions (8.6) it is easy to calculate the asymptotic 
large-r behaviour of gll( r, 0). We find that for r + cc 

( A =  - 1 )  

( A >  1 ) .  

(8.7) 

These equations show again that at the bulk critical temperature t = 0 there is a 
spontaneous boundary magnetisation provided that the enhancement of the couplings 
becomes sufficiently strong ( A  < - 1 ) .  As Af -1  we have 

This square-root behaviour agrees with the result by Burkhardt and Guim (1984) and 
by Burkhardt et a1 (1984). For A 5 - 1  we have m,( t = 0) = 0. 

Upon combining these t = 0 results with the t # 0 results obtained in 0 5 we see 
that when t passes through t =0,  m , ( t )  vanishes continuously if A 2  - 1 ,  but jumps to 
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zero (as soon as t becomes positive) if A < - 1 .  In this sense the transition is discon- 
tinuous for A < -1  ; however, we have also seen in 0 4 that at the transition point t = 0 
the correlation length diverges. 

The equations (8.7) also show that at bulk criticality the boundary correlation 
function decays as a power law for all values of A. Upon defining 7711 by 

gll(r, 0)- l/rv’l (8.9) 

we see that 

l + A  ( A >  - 1 )  
7711={o ( A <  - 1 ) .  

(8.10) 

For A < - 1  the next-to-leading term in (8.7) is associated with a n  exponent that we 
shall call v[,: 

(8 .11 )  

An exceptional case is A =  - 1 ,  where 7 = O  and gl l ( r ,  0) decays as the inverse of a 
logarithm. The correlation function exponents have all been listed in table 1 (see also 
figure 3). 

~i = / A /  - 1. 

9. Magnetisation along the critical isotherm 

In this section we consider the boundary magnetisation m,( t = 0,  h , )  in a small boundary 
field h,  at bulk criticality. For hl+O* we expect to obtain again the spontaneous 
boundary magnetisation* m,(O) given by (8.8). For h,  # 0 we shall obtain that 

m,(O, h , )  = (sgn h, )m, (O)  + (Taylor series in h , )  + ml,sg(O, h ) .  

ml,sg(o, h , )  - (sgn h l ) lh l l”6~~  as h ,  + 0. (9.2) 

(9.1) 

The exponent 6,, associated with the boundary magnetisation is defined by 

Whenever 1/6,, > 1 ,  the singular behaviour (9.2) will be dominated by the linear term 
of the Taylor series in (9.1). 

We shall obtain m,(O, h , )  from the basic relation (2.9). It will again be sufficient 
to know the small-0 behaviour of the quantities involved. Setting 

Hl = hl/kBTc 

we have, when (H,l<< 1 and le(<< 1 ,  

For yl (0)  we can now use the expressions (8.6). The evaluation of 
for small HI requires again that one distinguishes different cases, 
value of the amplitude A. This leads to the following expressions: 

(9.3) 

(9.4) 

the integral (9.4) 
according to the 

-3, -4 , .  . .) 
(9.5a) 
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(9.56) 

(9.5c) 

The proportionality factor CA is a positive constant given by 

(9.6) 
( - 1  < A <  1 ) .  

For A-* - 1  the constant C4 tends to zero and instead of ( 9 . 5 ~ )  and (9.56) we find 

ml.sg(O, h , )  L- (sgn h1)/[2cz2, ln(kET~/I~lI)l'/~ ( A = - l ) .  (9.7) 

For A +  - k ,  where k is a positive integer, the factor l/sin TA in ( 9 . 5 ~ )  diverges and 
the expression is replaced by 

m l , s g ( o ,  h l )  c= ( - l ) A C A ( s g n  hl) lhl /kETcl'A'- l  l n ( k B T c / i h l l )  ( A  = -2, -3,. . .). 
(9.8) 

For A +  1 - 1/k ,  where k = 1 , 2 , 3 , .  . . , the factor l/sin[.rr/(l - A ) ]  in (9.56) diverges 
and the expression is replaced by 

Ml,sg(O, h , )  (-l)k-lCA(sgn h l ) l h l / k s T c l ( ' + A ) ' ( l - A '  1 n( kBTc/ I h l  1 )  
( A = l - l / k ,  k = 1 , 2 , 3  , . . .  ). (9.9) 

For k = 1 this last expression describes the boundary magnetisation of a homogeneous 
( A  = 0) semi-infinite system, and reduces to 

(9.10) 

This agrees with the result obtained by McCoy and Wu (1973, ch VI, equation (5.37)) 
in their detailed study of the homogeneous case. The exponents S l l  implied by the 
equations have been listed in table 1 and are also shown in figure 3. 

For the further discussion of our results we define the 2nth moment x""'( t ,  h , )  of 
the boundary magnetisation by 

(9.1 1 )  

Clearly ~ ( ~ ' ( t ,  h , )  is the ordinary magnetic boundary susceptibility xI1(  t ,  h , )  discussed 
in 0 7. Because of the presence of the singular terms in the expansion (9.1) of m,(O, h , )  
we see that 

x'2"'(0,0) =CO for A ~ [ - 2 n , l - l / n ]  ( n  = 1 ,  2 , .  . .) (9.12) 

i.e. successive moments diverge in a nested sequence of successively larger intervals. 
Our analysis does not allow us to calculate the coefficients of the regular terms in the 
h ,  expansion of m,(O, h l ) .  It can be shown, nevertheless, that the coefficient of h:k-l 
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diverges as the inverse of the distance between A and the end points of the kth interval 
in (9.12). Hence 

,y(*")(O, 0 )  - (IAI -2n)-'  

,y '*f l ) (O,O)- (A- l+l /n) - '  a s A & l - l / n .  

asAT-2n 
(9.13) 

The behaviour (9.12) and (9.13) is strongly reminiscent of what was found by 
McCoy (1969) (see also McCoy and Wu 1973) for the quantities x(") when the J 2 ( 1 )  
are identically distributed random variables. In that case the ,y('") diverge in nested 
intervals on the temperature axis, the scale of the intervals being set by the width of 
the random distribution. 

10. Discussion 

Our basic equation, (2.27), has been derived in the limit of small t, 6, and E.  The 
amplitude A. of the asymptotic ( I  + CO) behaviour of the perturbation remains $xed in 
this limit, and we have shown that knowledge of this A. suffices to find the critical 
behaviour. For $nile values of 1, however, the strength of the applied perturbation 
becomes small with E .  One can therefore ask what the implications of our results are 
for fixed, finite, perturbations J 2 ( l ) - J 2 ( 0 ; ) )  with a given Ao. We argue here that for 
arbitrary finite-1 behaviour of the J2( I ) ,  the universal critical properties of the system, 
such as its exponents, are determined solely by the amplitude A. and are as given in 
this paper. In order to see this one can study the effect of taking into account terms 
proportional to 1 - 2 ,  l r 3 , .  . . in the asymptotic expansion (1.2). One way to do this 
would be to trace the influence of such terms on the differential equation (2.27) and 
its solution (e.g. taking J 2 ( 1 )  -J*(co)  = -Ao/(L+ I )  = -AJ ' ( l -  Ll - '+  L'l-' - .  . .) just 
leads to a shift of the spatial variable in (2.27)). Here we rather invoke the renormalisa- 
tion group arguments developed by Burkhardt (1982a, b) and Cordery (1982), who 
show that all l / l k  terms with k = 2 , 3 , .  . . are irrelevant for the determination of the 
universal critical quantities. We conclude therefore that for arbitrary interactions 
characterised by an asymptotic 1/  1 behaviour (i) the critical amplitudes given in this 
work will be modified by higher-order terms in 1/1,  but (ii) the exponents (table 1 and 
figure 3) are exact. Independent confirmation of the latter comes from the work of 
Burkhardt et a1 (1984), whose results coincide with ours in the domain of overlap, 
h = t = 0. There is also agreement with results for the spontaneous boundary magnetisa- 
tion obtained by Peschel (1984) in the anisotropic limit of our model. Furthermore 
we have shown that for A=O the problem greatly simplifies and our results for both 
exponents and amplitudes reduce to the exactly known values. 

A completely analogous situation prevails in the star-triangle solution (Hilhorst 
and van Leeuwen 1981, Burkhardt and Guim 1982, 1983, 1984, Burkhardt et a1 1984). 
There the system of interest is the 'initial condition' for a sequence of n transformations. 
Its critical behaviour is then extracted from the large n limit, which is described by a 
set of differential equations. Although these equations are not strictly valid at finite 
n, it suffices that for a given initial condition one approaches, as n +a, the solution 
of the differential equations. It has been amply demonstrated that this is the case for 
the systems of interest (see, for example, Burkhardt et a1 1984). 

The general theory of surface critical phenomena (see Binder 1983) predicts certain 
relationships between the critical exponents. One can easily verify that these also hold 
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for our non-universal (A-dependent) exponents. In particular we see from table 1 that 

(10.1) 

(10.2) 

(where Y = 1 is the bulk correlation length exponent, and d = 2 the lattice dimension), 
and 

(10.3) 

It is worthwhile to notice that a remarkable special case is obtained when the amplitude 
A takes the value -a. We then have 

p 1 -  - p = ’  8 7711=77=4 (A = -a)  (10.4) 

where p and 77 refer to the bulk. Hence for this value of A the spontaneous magnetisa- 
tion and pair correlation function exponents ‘do not notice’ the presence of the border. 
Similarly 

SI, = 7 y11= Y l l = i  (A = -3 )  4 (10.5) 

are the exponents associated with the spontaneous column magnetisation and the 
column susceptibility of an infinite homogeneous Ising model in which a magnetic field 
is applied to a single column only. 

In summary, we have presented a full analysis of the surface critical behaviour of 
the Hamiltonain (1.1) for the case of an inhomogeneity of the type (1.2). This class 
of inhomogeneities is marginal: it leads to non-universal critical exponents, dependent 
on the amplitude A of the perturbation (compare with the analogous behaviour in the 
case of a line defect (Bariev 1979, McCoy and Perk 1980)). The consequences for the 
observable quantities on the boundary of such a system have been derived and spelled 
out in this work. Together with the study of Burkhardt er a1 (1984) this work establishes 
a rather complete understanding of power-law-type inhomogeneities in the couplings 
of semi-infinite planar Ising lattices. 
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Appendix 

We study the recursion relation (2.6) in the anisotropic limit J 1 + O ,  J 2 ( I ) + c o ,  and 
show that it also leads to a differential equation of the form (2.27). It is convenient 
to use the standard variables A and E (here E has a different meaning than in 00 2 
and 10) defined by 

J 1 /  k,T = E ( A l a )  

exp(-2J2(co)/kBT) = A E  (Alb)  
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in which A = 1 corresponds to criticality, and E + 0 to the anisotropic limit. In terms 
of these variables (2.7) and (2.8) become 

z ,  = E 

zZ=  1 - 2 A ~  

a (  e )  5 - 2 ~  sin 8 

b ( e ) =  1-2.5 COS e. 
Furthermore we put 

z2( I )  = tanh J2( I ) /  kBT = 1 - 2Al& 

A ,  = 1 +AA + A / ( & / +  1)  

(A41 

(A51 

so that by (1.2) we have that A, + A for 1 + CO. With the choice 

we see that AA plays the role of the deviation from criticality. Upon putting E I  + 1 = s 
and x ,=x(s ) ,  and using (Al)-(A5) in the recursion (2.6), we find that in the limit 
E + 0 it reduces to the differential equation 

- -2 sin O ( l  -x2(s))-  
dx 
ds  
_-  

For small 8 this is the same as equation (2.27), although the constants appearing in 
it have a slightly different meaning. We remark that it has not been needed to assume 
that the AI  are close to the critical value A = 1. 
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